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ABSTRACT 
 
The application of deep learning to medical image analysis to aid diagnosis in healthcare has emerged as a powerful tool for early 

disease detection, thus improving treatment prospects and patient recovery. The aim of this study was to develop a convolutional 
neural network (CNN)-based predictive model to support the histopathological diagnosis of melanoma. To develop the proposed 
model, a dataset consisting of 411 images was used, including 393 of these in the experimental phase. The dataset was divided 
into 70% of the images for training and 30% for testing, and a model was constructed using ResNet50 architecture. The results 
showed that ResNet50 rapidly acquired the ability to distinguish features to accurately perform histopathological melanoma 
diagnoses. The error rate rapidly converged, achieving accuracy of approximately 90%. This proposed model is able to enhance 
diagnostic accuracy and support clinical practice in melanoma detection. 
 
Keywords: Artificial Intelligence; Pathology; Melanoma.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  

Thiago Magalhães Amarala*, Jefferson Tales Olivab, Henrique Takashi Idogavaa 
 

 
Federal University of Vale do São Francisco – UNIVASF, Petrolina – PE, Brasila  
Federal University of Technology - Paraná  – UTFPR, Pato Branco – PR, Brasilb  

*E-mail: thiago.magalhaes@univasf.edu.br 

DOI: 10.16891/2317-434X.v13.e4.a2026.id2848 
 

Recebido em: 13.03.2025 | Aceito em: 17.07.2025 



    

6234 
  

Artigos 

Originais 

INTRODUCTION 

 

The use of deep learning in medical image 

diagnosis plays a crucial role in healthcare and has 

progressed significantly since 2012. It is applied in various 

tasks, including medical image classification (SILVA et 

al., 2020). Deep learning uses convolutional neural 

networks (CNNs) to analyze images and extract relevant 

information, promoting accurate diagnosis of several 

pathologies, including cancer and pneumonia (SILVA et 

al., 2020; DILDAR et al., 2021; KUMAR and SINHA, 

2022). 

Specifically for melanoma, deep learning has 

supported medical decision-making, as highlighted by 

Vollmer et al. (2025). Moreover, it can recognize patterns, 

which is effective for early detection of melanoma, 

thereby contributing to better therapeutic outcomes and 

patient survival (VOLLMER et al., 2025). Recent studies 

have reported gains in applying deep learning to identify 

melanoma (KUMAR and SINHA, 2022; VOLLMER et 

al., 2025; and ARUK, PACAL, and TOPRAK, 2026). 

According to the Brazilian Society of 

Dermatology (SBD, 2025), skin cancer accounts for 

approximately 33% of all cancer diagnoses in Brazil, with 

an estimated 185,000 new cases per year. Researchers 

generally classify skin cancer into three main types: basal 

cell carcinoma, squamous cell carcinoma, and melanoma, 

the last of which is the most lethal (BHATT et al., 2022). 

Melanoma is an aggressive form of skin cancer that can 

rapidly metastasize throughout the body if not identified 

and treated early. Melanoma accounts for about 90% of 

deaths from skin cancer (SIEGEL et al., 2020) and in 

Brazil, this represents about 8,400 cases annually (SBD, 

2025). Although melanoma is the least frequent type of 

skin cancer, it has the poorest prognosis (SBD, 2025). 

However, the chances of cure are over 90% when it is 

detected early, reducing the risk of severe complications 

(SBD, 2025). 

According to the American Cancer Society 

(2021), the cure rate for melanoma can reach up to 99% 

when the disease is confined to the superficial skin layers, 

but this rate drops to approximately 15% when metastasis 

to other organs occurs. In this context, dermoscopic and 

histological evaluations play an essential role in melanoma 

diagnosis. Dermoscopy is a noninvasive semiological 

examination that assists dermatologists in evaluating 

pigmented lesions such as melanoma (SILVEIRA and 

GOULART, 2021). This tool enables detailed analysis of 

the skin surface and identifies characteristics such as 

asymmetry, irregular borders, color variations, and 

atypical pigment structures. According to the SBD (2025), 

melanoma generally has the appearance of a mole or mark 

on the skin, with brownish or blackish tones. For definitive 

diagnosis, a biopsy followed by histopathological analysis 

is required. This procedure enables precise evaluation of 

cellular characteristics and assists differentiation of benign 

lesions from malignant ones and determination of the 

stage and type of melanoma (BHATT et al., 2022). 

However, biopsy is also considered a rigorous, painful, 

expensive, and time-consuming procedure (BHATT et al., 

2022). 

Artificial intelligence (AI), in turn, has been 

used as a collaborative tool to assist dermatologists and 

has been improving the diagnostic accuracy of melanoma 

(VOLLMER, 2025). AI has also been used to analyze 

histopathological images to suggest possible cases of 

melanoma to pathologists (BHATT et al., 2022). Although 

these tools cannot replace the essential role of 

histopathological confirmation, they can assist clinicians 

in early detection of malignancies (BHATT et al., 2022). 

To predict skin cancer, researchers most often 

use supervised learning methods, employing classification 

algorithms based on conditional decisions or probabilities. 

The most widely used methods include decision trees, 

artificial neural networks (CNN and ViT models), support 

vector machines (SVM), k-nearest neighbors (KNN), and 

others (LEE et al., 2018; SHAHIN et al., 2019; SALEM et 

al., 2019; KHAN et al., 2019; ZHANG et al., 2020; JUTZI 

et al., 2020; DILDAR et al., 2021; SHALINALI et al., 

2021; ARAUJO, ARAÚJO, and SILVA, 2021, ARUK, 

PACAL, and TOPRAK, 2026). 

The literature holds several important studies 

comparing diagnoses made by specialists with those made 

by artificial neural networks for the classification of skin 

lesions (LEITER et al., 2014; BHATT et al., 2022; 

VOLLMER et al., 2025). Leiter et al. (2014) reported that 

predictive models achieved sensitivity of up to 95% and 

specificity of up to 88%, while dermatologists showed 

similar sensitivity and specificity rates of 95% and 90%, 

respectively. Vollmer et al. (2025) showed that when 

dermatologists incorporated predictions provided by deep 

learning models based on CNN (level III), sensitivity 
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increased to 91.4% (88.3–94.5%, p < 0.001) without 

significantly altering specificity (74.2%) or AUC-ROC 

(0.954). The authors emphasized that the use of deep 

learning slightly improved the diagnostic accuracy of 

dermatologists, increasing sensitivity without loss of 

specificity, thus highlighting the potential of the tool in 

melanoma diagnosis. 

Within the field of deep learning and its models, 

CNNs are a type of algorithm specifically designed to 

handle multidimensional data and to solve image 

recognition problems (AREL, ROSE and KARNOWSKI, 

2010). According to Lecun, Kavukcuoglu, and Farabet 

(2010), CNN architectures are inspired by biological 

systems, and they are able to learn invariant features. 

Several important studies have applied CNNs to 

melanoma identification. For example, Kumar et al. 

(2022) proposed a CNN and a transfer learning 

architecture to assist in melanoma detection, training and 

testing the model using the publicly available dataset from 

the International Skin Imaging Collaboration (ISIC). The 

model achieved an accuracy of 81.2%, precision of 71%, 

recall of 97%, and an F1 score of 85%. 

In another study, Rashid et al. (2022) employed 

a transfer deep learning model based on the MobileNetV2 

architecture for melanoma classification, also using the 

2020 dataset from ISIC, and achieved an impressive 

accuracy of 98.2%. Sayed, Soliman, and Hassanien (2021) 

proposed another hybrid approach, combining a CNN with 

a search optimization algorithm known as "Eagle" for 

melanoma recognition in skin lesions. This algorithm 

optimized the parameters for the SqueezeNet architecture, 

resulting in an accuracy of 98.37% in melanoma 

classification, with the ISIC 2020 dataset as the basis for 

the research. Additionally, Kaur et al. (2022) presented a 

CNN based on the LCNet network for automated 

melanoma classification. They used datasets from the ISIC 

database from 2016, 2017, and 2020; and the results 

showed accuracies of 81.41%, 88.23%, and 90.42%, 

respectively, demonstrating high performance for the 

model. 

Several studies have applied deep learning at the 

histopathological level. For example, Hekler et al. (2019) 

reported a discrepancy of 25-26% in the classification of 

benign nevi and malignant melanoma among 

histopathologists. In their study, the authors trained a CNN 

using 595 histopathological images of melanoma and nevi, 

achieving mean sensitivity, specificity, and accuracy 

values of 76%, 60%, and 68%, respectively, across 11 

tests. The authors then compared these results with those 

from 11 pathologists, who achieved mean sensitivity, 

specificity, and accuracy values of 51.8%, 66.5%, and 

59.2%, respectively. The CNN thereby significantly (p = 

0.016) outperformed the pathologists in image 

classification. Although AI can assist in diagnostic 

decision making, a pathologist should make the final 

diagnosis. It is important to note that only 2,006 

pathologists in Brazil have this medical specialization, 

representing 0.75% of the total number of physicians 

(CREMESP, 2023). 

Alheejawi et al. (2020) presented a state-of-the-

art review regarding computer-assisted diagnosis of skin 

cancer/melanoma using histopathological images. The 

authors reported that deep learning techniques, such as 

SegNet and U-Net, have been successfully used to analyze 

histopathological images. Although a large number of 

studies have applied artificial intelligence techniques for 

detection and identification of melanoma using clinical 

photographs of skin or dermoscopic images (Fig. 1), few 

studies have been conducted at the histological level, 

focusing on identification of tumor cells after a biopsy 

(Fig. 2). 
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Figure 1. Images of skin lesions, a) melanoma and b) normal patient. Source: Alenezi, Armghan and Polat (2023).

 
 

Figure 2. Histopathological images of a normal skin (left) and melanoma (right). Source: Nolan (2028). 
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Therefore, this aims of this study was to develop 

a CNN-based predictive model to support the 

histopathological diagnosis of melanoma.  

 

 

 

 

 

MATERIALS AND METHODS 

 

This research follows 11 steps as shown in Fig. 

3, namely: Data selection from the CPTAC-CM database, 

Database preprocessing, ResNet50 configuration, 

Training, Testing, Results classification, Confusion matrix 

analysis, Metrics analysis, Model evaluation, Discussion, 

and Conclusion. 
 

Figure 3. Research steps.

 
 

The dataset was obtained from the National 

Cancer Institute's Clinical Proteomic Tumor Analysis 

Consortium - Cutaneous Melanoma (CPTAC-CM) 

platform, which aims to advance understanding of the 

molecular mechanisms of cancer through extensive 

proteomic and genomic analyses. The Cancer Imaging 

Archive systematically collects radiology and pathology 

images of CPTAC patients and makes these images 

available to the scientific community, facilitating 

investigations of cancer phenotypes that can be correlated 

with corresponding proteomic, genomic, and clinical data. 

The dataset comprises 411 images, 393 of which were 

used in the experiment. Among these, 282 presented 

images of melanoma in patients, while 111 were images 

of normal skin structures without melanoma. 

The ResNet50 network was selected in this study 

due to its extensive parameter count, exceeding 23 million, 

and its validation in previous research with medical 

images (SILVA et al., 2020). According to Silva et al. 

(2020), ResNet is a well-established CNN model that 

serves as a fundamental framework for various computer 

vision tasks. This architecture has demonstrated 

remarkable effectiveness in several applications, including 

object recognition, object detection, and semantic 

segmentation. A distinctive feature of this network is its 

depth, consisting of 50 layers, which explains its name. 
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Silva et al. (2020) present further details on the ResNet 

architecture. 

The widely used confusion matrix was adopted in 

this study to evaluate classification performance and to 

facilitate identification of error patterns and make 

adjustments to improve predictive accuracy. The 

confusion matrix provides a table with the frequencies of 

correct and incorrect classifications made by a machine 

learning model in relation to the true classes within a 

dataset. In binary classification, the confusion matrix 

comprises four main parameters (SILVA, 2018): true 

positive (TP), defined as the number of samples correctly 

classified as positive; true negative (TN), the number of 

samples correctly classified as negative; false positive 

(FP), the number of samples incorrectly classified as 

positive; and false negative (FN), the number of samples 

incorrectly classified as negative. In this research, 

accuracy, precision, recall, and the F1-Score were used. 

According to Silva et al. (2020), these metrics are defined 

and computed as follows: 

Accuracy refers to the proportion of the total 

number of correct classifications (TP and TN) within the 

total number of classifications, including false positives 

and false negatives (FP and FN). Accuracy = 
(𝐓𝐏 + 𝐓𝐍) 

(𝐓𝐏 + 𝐅𝐏 + 𝐅𝐍 + 𝐓𝐍) 
  (Eq. 1). Precision refers to the 

proportion of TP classifications among all positive 

classifications. Precision = 
𝐓𝐏

(𝐓𝐏 + 𝐅𝐏) 
  (Eq. 2).  Recall is the 

proportion of TP and the number of TP plus FN. Recall = 
𝐓𝐏

(𝐓𝐏 + 𝐅𝐍) 
  (Eq. 3). The F1-Score is a weighted average of 

precision and recall, with values ranging from 0 (worst) to 

1 (best) (SILVA, 2018). F1-Score =  
𝟐  (𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 𝐱 𝐑𝐞𝐜𝐚𝐥𝐥) 

(𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 + 𝐑𝐞𝐜𝐚𝐥𝐥) 
  

(Eq. 4). 

We organized the dataset, mainly because some 

images did not have a corresponding diagnosis (label) and 

had different dimensions. We manually removed 18 

images from the original dataset containing 411 images. In 

this preprocessing step, the “ImageDataGenerator” object 

was used with the parameter “rescale=1/255” to normalize 

the pixel values of the test images, converting them from 

the original range of 0-255 to a range of 0-1, which 

improved the neural network performance. The 

“flow_from_directory” method was then applied to create 

a data generator that automatically reads images from a 

specific directory, resizing them all to 256 × 256 pixels, as 

required by the ResNet50 model architecture. The images 

were organized into batches of three and shuffled to avoid 

bias in the evaluation order. In addition, class 

categorization was defined as 'categorical', meaning that 

the labels were provided in a one-hot encoded format, 

suitable for binary classification problems such as 

melanoma detection. Thus, the test images were efficiently 

loaded, resized, normalized, and organized for evaluation 

by the trained model. 

In this study, the main hyperparameters included 

batch size, which was initially set to 10 for the train 

generator function and later adjusted to 3 before model 

training. Model training was conducted for 30 epochs, 

where one epoch represents a complete pass through the 

entire training dataset. The number of epochs determines 

the length of the model learning period. Too many epochs 

may lead to overfitting, while too few may result in 

underfitting. 

The categorical_crossentropy function was used 

as a loss function to quantify model error during training. 

In addition, the sigmoid activation function was used in 

the output layer. For binary classification, the sigmoid 

function is appropriate because it produces an output from 

0-1, which can be interpreted as the probability of the 

positive class. Each of the two additional hidden dense 

layers including definition of 256 neurons were added to 

the base model. A dropout rate of 0.2 was used for the 

dense layers. Finally, the pooling size of the average 

pooling layer (AveragePooling2D) was initially set to (4, 

4) and subsequently adjusted to (8, 8) during cross-

validation. 

The dataset was divided into 70% for training and 

30% for testing. Figure 2 illustrates two histopathological 

images from this dataset, which were converted to 

grayscale. Python programming language was used to 

develop the CNN architectures. Google Colab was chosen 

to run the ResNet50 simulations, as it provides pre-

configured Python 2 and 3 runtime environments and 

comes equipped with essential artificial intelligence 

libraries essential for our study (TensorFlow, Keras, 

NumPy, and Matplotlib). In addition, five simulations 

were performed to evaluate different model parameters, 

with the goal of achieving optimal accuracy. 

The K-Fold cross-validation technique was 

applied to evaluate model performance since the dataset 
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was limited to 393 images. Instead of splitting the data into 

a single fixed training and test set, cross-validation divides 

the dataset into K subsets (folds) of approximately equal 

size. K-Fold cross-validation in this study was n_splits = 

5. The process was performed five times. Upon 

concluding the five iterations, five sets of evaluation 

metrics were obtained, one for each fold. 

 

 

 

RESULTS AND DISCUSSION 

 

Fig. 4 illustrates the error and success rate during 

the training process. These results indicate that ResNet50 

rapidly learned to distinguish melanoma at the 

histopathological level, as confirmed by experimental 

validation. The error rate quickly converged, ultimately 

achieving an accuracy of approximately 89.83%. The error 

rate stabilized between 0.2 and 0.3 toward the end of the 

training process (around epochs 25-30).
 

Figure 4. Error and success rate during training.

 
 

Fig. 5 presents the confusion matrix, with the 

results for True Positives (76), True Negatives (31), False 

Positives (2), and False Negatives (9).
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Figure 5. Confusion Matrix.

 
 

Table 1 presents the metrics obtained, including 

precision, recall, and F1-Score. Notably, the accuracy in 

identifying melanoma (97%) was higher than that for 

normal images (78%). This difference highlights the 

classifier's ability to avoid misclassifying negative 

samples as positive. Recall exhibited a higher value for 

normal images (94%) compared to melanoma images 

(89%). Finally, the F1-Score illustrates that the classifier 

performed well in identifying melanoma (93%), as the 

result approached a value closer to 1.

 
Table 1. Metrics referring to the proposed model. 

 Precision Recall F1-Score 

Normal 0.78 0.94 0.85 

Melanoma 0.97 0.89 0.93 

Accuracy   0.91 

Figure 6 shows the Receiver Operating 

Characteristic (ROC) curve used to evaluate the 

performance of the classification model. The ROC curve 

is a widely used tool for assessing the performance of 

binary classification models (normal vs. melanoma). The 

x-axis (false positive rate - FPR) is known as specificity, 

representing the proportion of negative cases that the 

model incorrectly classified as positive. The Y-axis (true 

positive rate - TPR) is known as sensitivity or recall, 

representing the proportion of positive cases correctly 
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classified by the model. The Area Under the Curve (AUC) 

refers to the area under the ROC curve, which is an 

aggregated measure that summarizes the overall 

performance of the classifier across all possible 

classification thresholds. The AUC value ranges from 0 to 

1. 

 
Figure 6. ROC Curves for each fold. 

 
 

In this study, the ROC curve was well above the 

random dashed line, and the mean AUC value was 0.90. 

This indicates that the model performed well in 

distinguishing the "Normal" from the "Melanoma" 

classes. An AUC of 90% suggests a high probability that 

the model assigns a higher score to a randomly chosen 

positive case (melanoma) than to a randomly chosen 

negative case (normal). The consistent position of the 

curves above the random line and the AUC values 

consistently above 85% across all folds indicate that the 

model is reasonably robust. The mean AUC (90.19%) 

from cross-validation was very close to the accuracy of the 

model on the test set (89.83%). Fold 4 achieved the best 

ROC, with AUC = 0.96. Analysis of the ROC curve and 

the AUC is important for understanding the trade-off 

between sensitivity and specificity at different decision 

thresholds and for comparing the performance of different 

models. 

The results demonstrate that the ResNet50-based 

model can effectively support medical decision-making. 

Our research findings are consistent with the existing 

literature. For example, the accuracy of our model is 

comparable to that of previous studies on melanoma 

identification, such as Lee et al. (2018) with 80.91%, 

Barata et al. (2015) with 84.30%, and Kaur et al. (2015) 

with 87.90%. Additionally, the work of Kumar and Sinha 

(2022), which employed CNNs and transfer learning, 

achieved an accuracy of 81.2%, precision of 71%, recall 
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of 97%, and an F1-Score of 85%, values closely mirroring 

those attained by our model, albeit with distinct datasets. 

It is noteworthy that all the aforementioned studies were 

conducted using dermoscopic images rather than 

histopathological ones.  

In studies specifically involving histopathological 

images, our model achieved higher accuracy than that of 

Hekler et al. (2019), who reported 68%, although it fell 

short of the performance achieved by Xie et al. (2020), 

who obtained 98.5%. Hekler et al. (2019) used a dataset 

comprising 695 lesions classified by 11 expert 

histopathologists in accordance with current guidelines 

(350 nevi and 345 melanomas, resulting in 695 images). 

Similar to our approach, the authors employed ResNet-50 

as the convolutional neural network (CNN). The ResNet-

50 model achieved mean sensitivity of 76%, specificity of 

60%, and accuracy of 68% across 11 test runs. In 

comparison, the 11 pathologists achieved mean sensitivity 

of 51.8%, specificity of 66.5%, and accuracy of 59.2%. 

Therefore, the authors concluded that the CNN was 

significantly superior (p = 0.016) in classifying 

histopathological images. 

In contrast, Xie et al. (2020) developed a deep 

learning pipeline to enhance melanoma diagnosis using 

CNNs and to localize potential malignant melanoma tissue 

through gradient-weighted class activation mapping. Their 

dataset included 1,806 melanoma and 435 nevus images, 

a dataset approximately six times the size of ours. The 

CNN model achieved an AUC of 0.985, sensitivity of 

93.6%, and specificity of 95.9%. The accuracy of their 

model (93.3%) was also compared with the accuracy of 20 

pathologists (73.2%), with the model showing a clear 

performance advantage. Similar to Hekler et al. (2019), the 

authors compared the neural network results with expert 

pathologist assessments. 

 

LIMITATIONS 

 

A limitation of the present study is the relatively 

small sample size, comprising 411 images, of which 393 

were used in the experiment. Future research should 

expand the dataset to enhance the accuracy and robustness 

of the model. A possible approach to increase the number 

of images is to add the dataset provided by Thomas et al. 

(2021). Data augmentation techniques were not applied in 

our study, due to the size and nature of the available 

dataset. Although data augmentation methods can help 

increase dataset diversity and potentially improve the 

generalization ability of the model, the relatively limited 

number of images and the clinical specificity of the 

melanoma images required a more conservative approach, 

to avoid introducing artificial variations that might not 

accurately reflect the true characteristics of the lesions. In 

other words, the primary focus of our work was to evaluate 

model performance using original data to ensure that the 

results were directly representative of clinical images 

without additional manipulations. Another limitation of 

our study was that a team of pathologists did not validate 

the model, unlike the approaches adopted by Hekler et al. 

(2019) and Xie et al. (2020). This validation could have 

confirmed and strengthened the potential applicability of 

our results. 

 

CONCLUSION 

 

In this study, we developed a CNN model for 

melanoma detection in histopathological evaluations. The 

proposed classification model achieved an accuracy of 

approximately 90% over 30 epochs, as indicated by the 

evaluation metrics. Although the CNN model 

demonstrated promising results in melanoma 

classification, including high accuracy metrics, it is 

important to emphasize that it should be considered a 

complementary tool in clinical assessment. A qualified 

pathologist must always make the final diagnosis. In future 

research, we intend to compare our results with alternative 

neural network architectures, such as DenseNet, Xception, 

MobileNetV2, and LCNet. We also intend to expand the 

dataset of pathological images, as we recognize that the 

dataset used here is still relatively small given the 

importance of the topic. Furthermore, we aim to 

implement the model within a healthcare setting to further 

evaluate its potential in supporting medical decision-

making in real-world scenarios. With additional 

validation, we believe the model may help improve 

diagnostic accuracy and contribute to early detection 

efforts, ultimately enhancing clinical practice in 

management of melanoma.
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