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ABSTRACT

The application of deep learning to medical image analysis to aid diagnosis in healthcare has emerged as a powerful tool for early
disease detection, thus improving treatment prospects and patient recovery. The aim of this study was to develop a convolutional
neural network (CNN)-based predictive model to support the histopathological diagnosis of melanoma. To develop the proposed
model, a dataset consisting of 411 images was used, including 393 of these in the experimental phase. The dataset was divided
into 70% of the images for training and 30% for testing, and a model was constructed using ResNet50 architecture. The results
showed that ResNet50 rapidly acquired the ability to distinguish features to accurately perform histopathological melanoma
diagnoses. The error rate rapidly converged, achieving accuracy of approximately 90%. This proposed model is able to enhance
diagnostic accuracy and support clinical practice in melanoma detection.
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INTRODUCTION

The use of deep learning in medical image
diagnosis plays a crucial role in healthcare and has
progressed significantly since 2012. It is applied in various
tasks, including medical image classification (SILVA et
al., 2020). Deep learning uses convolutional neural
networks (CNN5s) to analyze images and extract relevant
information, promoting accurate diagnosis of several
pathologies, including cancer and pneumonia (SILVA et
al., 2020; DILDAR et al., 2021; KUMAR and SINHA,
2022).

Specifically for melanoma, deep learning has
supported medical decision-making, as highlighted by
Vollmer et al. (2025). Moreover, it can recognize patterns,
which is effective for early detection of melanoma,
thereby contributing to better therapeutic outcomes and
patient survival (VOLLMER et al., 2025). Recent studies
have reported gains in applying deep learning to identify
melanoma (KUMAR and SINHA, 2022; VOLLMER et
al., 2025; and ARUK, PACAL, and TOPRAK, 2026).

According to the Brazilian Society of
Dermatology (SBD, 2025), skin cancer accounts for
approximately 33% of all cancer diagnoses in Brazil, with
an estimated 185,000 new cases per year. Researchers
generally classify skin cancer into three main types: basal
cell carcinoma, squamous cell carcinoma, and melanoma,
the last of which is the most lethal (BHATT et al., 2022).
Melanoma is an aggressive form of skin cancer that can
rapidly metastasize throughout the body if not identified
and treated early. Melanoma accounts for about 90% of
deaths from skin cancer (SIEGEL et al., 2020) and in
Brazil, this represents about 8,400 cases annually (SBD,
2025). Although melanoma is the least frequent type of
skin cancer, it has the poorest prognosis (SBD, 2025).
However, the chances of cure are over 90% when it is
detected early, reducing the risk of severe complications
(SBD, 2025).

According to the American Cancer Society
(2021), the cure rate for melanoma can reach up to 99%
when the disease is confined to the superficial skin layers,
but this rate drops to approximately 15% when metastasis
to other organs occurs. In this context, dermoscopic and
histological evaluations play an essential role in melanoma
diagnosis. Dermoscopy is a noninvasive semiological
examination that assists dermatologists in evaluating

pigmented lesions such as melanoma (SILVEIRA and
GOULART, 2021). This tool enables detailed analysis of
the skin surface and identifies characteristics such as
asymmetry, irregular borders, color variations, and
atypical pigment structures. According to the SBD (2025),
melanoma generally has the appearance of a mole or mark
on the skin, with brownish or blackish tones. For definitive
diagnosis, a biopsy followed by histopathological analysis
is required. This procedure enables precise evaluation of
cellular characteristics and assists differentiation of benign
lesions from malignant ones and determination of the
stage and type of melanoma (BHATT et al., 2022).
However, biopsy is also considered a rigorous, painful,
expensive, and time-consuming procedure (BHATT et al.,
2022).

Artificial intelligence (Al), in turn, has been
used as a collaborative tool to assist dermatologists and
has been improving the diagnostic accuracy of melanoma
(VOLLMER, 2025). Al has also been used to analyze
histopathological images to suggest possible cases of
melanoma to pathologists (BHATT et al., 2022). Although
these tools cannot replace the essential role of
histopathological confirmation, they can assist clinicians
in early detection of malignancies (BHATT et al., 2022).

To predict skin cancer, researchers most often
use supervised learning methods, employing classification
algorithms based on conditional decisions or probabilities.
The most widely used methods include decision trees,
artificial neural networks (CNN and ViT models), support
vector machines (SVM), k-nearest neighbors (KNN), and
others (LEE et al., 2018; SHAHIN et al., 2019; SALEM et
al., 2019; KHAN et al., 2019; ZHANG et al., 2020; JUTZI
et al., 2020; DILDAR et al., 2021; SHALINALI et al.,
2021; ARAUJO, ARAUJO, and SILVA, 2021, ARUK,
PACAL, and TOPRAK, 2026).

The literature holds several important studies
comparing diagnoses made by specialists with those made
by artificial neural networks for the classification of skin
lesions (LEITER et al.,, 2014; BHATT et al, 2022;
VOLLMER et al., 2025). Leiter et al. (2014) reported that
predictive models achieved sensitivity of up to 95% and
specificity of up to 88%, while dermatologists showed
similar sensitivity and specificity rates of 95% and 90%,
respectively. Vollmer et al. (2025) showed that when
dermatologists incorporated predictions provided by deep
learning models based on CNN (level IIl), sensitivity
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increased to 91.4% (88.3-94.5%, p < 0.001) without
significantly altering specificity (74.2%) or AUC-ROC
(0.954). The authors emphasized that the use of deep
learning slightly improved the diagnostic accuracy of
dermatologists, increasing sensitivity without loss of
specificity, thus highlighting the potential of the tool in
melanoma diagnosis.

Within the field of deep learning and its models,
CNNs are a type of algorithm specifically designed to
handle multidimensional data and to solve image
recognition problems (AREL, ROSE and KARNOWSKI,
2010). According to Lecun, Kavukcuoglu, and Farabet
(2010), CNN architectures are inspired by biological
systems, and they are able to learn invariant features.
Several important studies have applied CNNs to
melanoma identification. For example, Kumar et al.
(2022) proposed a CNN and a transfer learning
architecture to assist in melanoma detection, training and
testing the model using the publicly available dataset from
the International Skin Imaging Collaboration (ISIC). The
model achieved an accuracy of 81.2%, precision of 71%,
recall of 97%, and an F1 score of 85%.

In another study, Rashid et al. (2022) employed
a transfer deep learning model based on the MobileNetV2
architecture for melanoma classification, also using the
2020 dataset from ISIC, and achieved an impressive
accuracy of 98.2%. Sayed, Soliman, and Hassanien (2021)
proposed another hybrid approach, combining a CNN with
a search optimization algorithm known as "Eagle" for
melanoma recognition in skin lesions. This algorithm
optimized the parameters for the SqueezeNet architecture,
resulting in an accuracy of 98.37% in melanoma
classification, with the ISIC 2020 dataset as the basis for
the research. Additionally, Kaur et al. (2022) presented a
CNN based on the LCNet network for automated
melanoma classification. They used datasets from the ISIC
database from 2016, 2017, and 2020; and the results

showed accuracies of 81.41%, 88.23%, and 90.42%,
respectively, demonstrating high performance for the
model.

Several studies have applied deep learning at the
histopathological level. For example, Hekler et al. (2019)
reported a discrepancy of 25-26% in the classification of
benign nevi and malignant melanoma among
histopathologists. In their study, the authors trained a CNN
using 595 histopathological images of melanoma and nevi,
achieving mean sensitivity, specificity, and accuracy
values of 76%, 60%, and 68%, respectively, across 11
tests. The authors then compared these results with those
from 11 pathologists, who achieved mean sensitivity,
specificity, and accuracy values of 51.8%, 66.5%, and
59.2%, respectively. The CNN thereby significantly (p =
0.016) outperformed the pathologists in image
classification. Although AI can assist in diagnostic
decision making, a pathologist should make the final
diagnosis. It is important to note that only 2,006
pathologists in Brazil have this medical specialization,
representing 0.75% of the total number of physicians
(CREMESP, 2023).

Alheejawi et al. (2020) presented a state-of-the-
art review regarding computer-assisted diagnosis of skin
cancer/melanoma using histopathological images. The
authors reported that deep learning techniques, such as
SegNet and U-Net, have been successfully used to analyze
histopathological images. Although a large number of
studies have applied artificial intelligence techniques for
detection and identification of melanoma using clinical
photographs of skin or dermoscopic images (Fig. 1), few
studies have been conducted at the histological level,
focusing on identification of tumor cells after a biopsy

(Fig. 2).
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Figure 1. Images of skin lesions, a) melanoma and b) normal patient. Source: Alenezi, Armghan and Polat (2023).

(b)
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Therefore, this aims of this study was to develop
a CNN-based predictive model to support the
histopathological diagnosis of melanoma.

MATERIALS AND METHODS

This research follows 11 steps as shown in Fig.
3, namely: Data selection from the CPTAC-CM database,
Database  preprocessing, ResNet50 configuration,
Training, Testing, Results classification, Confusion matrix
analysis, Metrics analysis, Model evaluation, Discussion,
and Conclusion.

Figure 3. Research steps.
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The dataset was obtained from the National
Cancer Institute's Clinical Proteomic Tumor Analysis
Consortium - Cutaneous Melanoma (CPTAC-CM)
platform, which aims to advance understanding of the
molecular mechanisms of cancer through extensive
proteomic and genomic analyses. The Cancer Imaging
Archive systematically collects radiology and pathology
images of CPTAC patients and makes these images
available to the scientific community, facilitating
investigations of cancer phenotypes that can be correlated
with corresponding proteomic, genomic, and clinical data.
The dataset comprises 411 images, 393 of which were
used in the experiment. Among these, 282 presented

Model
evaluation

Conclusion

images of melanoma in patients, while 111 were images
of normal skin structures without melanoma.

The ResNet50 network was selected in this study
due to its extensive parameter count, exceeding 23 million,
and its validation in previous research with medical
images (SILVA et al., 2020). According to Silva et al.
(2020), ResNet is a well-established CNN model that
serves as a fundamental framework for various computer
vision tasks. This architecture has demonstrated
remarkable effectiveness in several applications, including
object recognition, object detection, and semantic
segmentation. A distinctive feature of this network is its
depth, consisting of 50 layers, which explains its name.

6237




revisto

Artigos
Originais

interfaces

V.13, N. 4 (2025) | ISSN 2317-434X

Silva et al. (2020) present further details on the ResNet
architecture.

The widely used confusion matrix was adopted in
this study to evaluate classification performance and to
facilitate identification of error patterns and make
adjustments to improve predictive accuracy. The
confusion matrix provides a table with the frequencies of
correct and incorrect classifications made by a machine
learning model in relation to the true classes within a
dataset. In binary classification, the confusion matrix
comprises four main parameters (SILVA, 2018): true
positive (TP), defined as the number of samples correctly
classified as positive; true negative (TN), the number of
samples correctly classified as negative; false positive
(FP), the number of samples incorrectly classified as
positive; and false negative (FN), the number of samples
incorrectly classified as negative. In this research,
accuracy, precision, recall, and the F1-Score were used.
According to Silva et al. (2020), these metrics are defined
and computed as follows:

Accuracy refers to the proportion of the total
number of correct classifications (TP and TN) within the
total number of classifications, including false positives
and false negatives (FP and FN). Accuracy =

(TP + TN) (Eq.
(TP + FP + FN + TN)
proportion of TP classifications among all positive

TP .
(TP + FP) (Eq. 2). Recall is the

proportion of TP and the number of TP plus FN. Recall =
TP

(TP + FN)
precision and recall, with values ranging from 0 (worst) to

1 (best) (SILVA, 2018). F1-Score = 2-txecisionxRecall)

(Eq. 4).

We organized the dataset, mainly because some
images did not have a corresponding diagnosis (label) and
had different dimensions. We manually removed 18
images from the original dataset containing 411 images. In
this preprocessing step, the “ImageDataGenerator” object
was used with the parameter “rescale=1/255" to normalize
the pixel values of the test images, converting them from
the original range of 0-255 to a range of 0-1, which
improved the neural network performance. The
“flow from_directory” method was then applied to create
a data generator that automatically reads images from a

1). Precision refers to the

classifications. Precision =

(Eq. 3). The F1-Score is a weighted average of

(Precision + Recall)

specific directory, resizing them all to 256 % 256 pixels, as
required by the ResNet50 model architecture. The images
were organized into batches of three and shuffled to avoid
bias in the evaluation order. In addition, class
categorization was defined as 'categorical', meaning that
the labels were provided in a one-hot encoded format,
suitable for binary classification problems such as
melanoma detection. Thus, the test images were efficiently
loaded, resized, normalized, and organized for evaluation
by the trained model.

In this study, the main hyperparameters included
batch size, which was initially set to 10 for the train
generator function and later adjusted to 3 before model
training. Model training was conducted for 30 epochs,
where one epoch represents a complete pass through the
entire training dataset. The number of epochs determines
the length of the model learning period. Too many epochs
may lead to overfitting, while too few may result in
underfitting.

The categorical crossentropy function was used
as a loss function to quantify model error during training.
In addition, the sigmoid activation function was used in
the output layer. For binary classification, the sigmoid
function is appropriate because it produces an output from
0-1, which can be interpreted as the probability of the
positive class. Each of the two additional hidden dense
layers including definition of 256 neurons were added to
the base model. A dropout rate of 0.2 was used for the
dense layers. Finally, the pooling size of the average
pooling layer (AveragePooling2D) was initially set to (4,
4) and subsequently adjusted to (8, 8) during cross-
validation.

The dataset was divided into 70% for training and
30% for testing. Figure 2 illustrates two histopathological
images from this dataset, which were converted to
grayscale. Python programming language was used to
develop the CNN architectures. Google Colab was chosen
to run the ResNet50 simulations, as it provides pre-
configured Python 2 and 3 runtime environments and
comes equipped with essential artificial intelligence
libraries essential for our study (TensorFlow, Keras,
NumPy, and Matplotlib). In addition, five simulations
were performed to evaluate different model parameters,
with the goal of achieving optimal accuracy.

The K-Fold cross-validation technique was

applied to evaluate model performance since the dataset
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was limited to 393 images. Instead of splitting the data into
a single fixed training and test set, cross-validation divides
the dataset into K subsets (folds) of approximately equal
size. K-Fold cross-validation in this study was n_splits =
5. The process was performed five times. Upon
concluding the five iterations, five sets of evaluation
metrics were obtained, one for each fold.

RESULTS AND DISCUSSION

Fig. 4 illustrates the error and success rate during
the training process. These results indicate that ResNet50
rapidly learned to distinguish melanoma at the
histopathological level, as confirmed by experimental
validation. The error rate quickly converged, ultimately
achieving an accuracy of approximately 89.83%. The error
rate stabilized between 0.2 and 0.3 toward the end of the
training process (around epochs 25-30).

Figure 4. Error and success rate during training.

1.4 4

1.2 H

1.0 1

0.8

0.6 1

Success rate and error

0.4 1

0.2 1

—— 5Success rate
Error

Fig. 5 presents the confusion matrix, with the
results for True Positives (76), True Negatives (31), False
Positives (2), and False Negatives (9).
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Figure 5. Confusion Matrix.
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Table 1 presents the metrics obtained, including
precision, recall, and F1-Score. Notably, the accuracy in
identifying melanoma (97%) was higher than that for
normal images (78%). This difference highlights the
classifier's ability to avoid misclassifying negative
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samples as positive. Recall exhibited a higher value for
normal images (94%) compared to melanoma images
(89%). Finally, the F1-Score illustrates that the classifier
performed well in identifying melanoma (93%), as the
result approached a value closer to 1.

Table 1. Metrics referring to the proposed model.

Precision Recall F1-Score
Normal 0.78 0.94 0.85
Melanoma 0.97 0.89 0.93
Accuracy 0.91
Figure 6 shows the Receiver Operating x-axis (false positive rate - FPR) is known as specificity,

Characteristic (ROC) curve used to evaluate the
performance of the classification model. The ROC curve
is a widely used tool for assessing the performance of
binary classification models (normal vs. melanoma). The

representing the proportion of negative cases that the
model incorrectly classified as positive. The Y-axis (true
positive rate - TPR) is known as sensitivity or recall,
representing the proportion of positive cases correctly
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classified by the model. The Area Under the Curve (AUC)
refers to the area under the ROC curve, which is an

performance of the classifier across all possible
classification thresholds. The AUC value ranges from 0 to

aggregated measure that summarizes the overall 1.
Figure 6. ROC Curves for each fold.
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In this study, the ROC curve was well above the
random dashed line, and the mean AUC value was 0.90.
This indicates that the model performed well in
distinguishing the "Normal" from the "Melanoma"
classes. An AUC of 90% suggests a high probability that
the model assigns a higher score to a randomly chosen
positive case (melanoma) than to a randomly chosen
negative case (normal). The consistent position of the
curves above the random line and the AUC values
consistently above 85% across all folds indicate that the
model is reasonably robust. The mean AUC (90.19%)
from cross-validation was very close to the accuracy of the
model on the test set (89.83%). Fold 4 achieved the best
ROC, with AUC = 0.96. Analysis of the ROC curve and

the AUC is important for understanding the trade-off
between sensitivity and specificity at different decision
thresholds and for comparing the performance of different
models.

The results demonstrate that the ResNet50-based
model can effectively support medical decision-making.
Our research findings are consistent with the existing
literature. For example, the accuracy of our model is
comparable to that of previous studies on melanoma
identification, such as Lee et al. (2018) with 80.91%,
Barata et al. (2015) with 84.30%, and Kaur et al. (2015)
with 87.90%. Additionally, the work of Kumar and Sinha
(2022), which employed CNNs and transfer learning,
achieved an accuracy of 81.2%, precision of 71%, recall
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0f 97%, and an F1-Score of 85%, values closely mirroring
those attained by our model, albeit with distinct datasets.
It is noteworthy that all the aforementioned studies were
conducted using dermoscopic images rather than
histopathological ones.

In studies specifically involving histopathological
images, our model achieved higher accuracy than that of
Hekler et al. (2019), who reported 68%, although it fell
short of the performance achieved by Xie et al. (2020),
who obtained 98.5%. Hekler et al. (2019) used a dataset
comprising 695 lesions classified by 11 expert
histopathologists in accordance with current guidelines
(350 nevi and 345 melanomas, resulting in 695 images).
Similar to our approach, the authors employed ResNet-50
as the convolutional neural network (CNN). The ResNet-
50 model achieved mean sensitivity of 76%, specificity of
60%, and accuracy of 68% across 11 test runs. In
comparison, the 11 pathologists achieved mean sensitivity
of 51.8%, specificity of 66.5%, and accuracy of 59.2%.
Therefore, the authors concluded that the CNN was
significantly superior (p = 0.016) in classifying
histopathological images.

In contrast, Xie et al. (2020) developed a deep
learning pipeline to enhance melanoma diagnosis using
CNNs and to localize potential malignant melanoma tissue
through gradient-weighted class activation mapping. Their
dataset included 1,806 melanoma and 435 nevus images,
a dataset approximately six times the size of ours. The
CNN model achieved an AUC of 0.985, sensitivity of
93.6%, and specificity of 95.9%. The accuracy of their
model (93.3%) was also compared with the accuracy of 20
pathologists (73.2%), with the model showing a clear
performance advantage. Similar to Hekler et al. (2019), the
authors compared the neural network results with expert
pathologist assessments.

LIMITATIONS

A limitation of the present study is the relatively
small sample size, comprising 411 images, of which 393
were used in the experiment. Future research should
expand the dataset to enhance the accuracy and robustness
of the model. A possible approach to increase the number
of images is to add the dataset provided by Thomas et al.

(2021). Data augmentation techniques were not applied in
our study, due to the size and nature of the available
dataset. Although data augmentation methods can help
increase dataset diversity and potentially improve the
generalization ability of the model, the relatively limited
number of images and the clinical specificity of the
melanoma images required a more conservative approach,
to avoid introducing artificial variations that might not
accurately reflect the true characteristics of the lesions. In
other words, the primary focus of our work was to evaluate
model performance using original data to ensure that the
results were directly representative of clinical images
without additional manipulations. Another limitation of
our study was that a team of pathologists did not validate
the model, unlike the approaches adopted by Hekler et al.
(2019) and Xie et al. (2020). This validation could have
confirmed and strengthened the potential applicability of
our results.

CONCLUSION

In this study, we developed a CNN model for
melanoma detection in histopathological evaluations. The
proposed classification model achieved an accuracy of
approximately 90% over 30 epochs, as indicated by the
evaluation metrics. Although the CNN model
demonstrated  promising results in  melanoma
classification, including high accuracy metrics, it is
important to emphasize that it should be considered a
complementary tool in clinical assessment. A qualified
pathologist must always make the final diagnosis. In future
research, we intend to compare our results with alternative
neural network architectures, such as DenseNet, Xception,
MobileNetV2, and LCNet. We also intend to expand the
dataset of pathological images, as we recognize that the
dataset used here is still relatively small given the
importance of the topic. Furthermore, we aim to
implement the model within a healthcare setting to further
evaluate its potential in supporting medical decision-
making in real-world scenarios. With additional
validation, we believe the model may help improve
diagnostic accuracy and contribute to early detection
efforts, ultimately enhancing clinical practice in
management of melanoma.
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